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Parabosons versus supersymmetry in Jahn-Teller systems 
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Department of Physics and Astronomy, University of Canterbury, Private Bag 48W. 
Chnstchurch, New Zealand 

Received 7 December 1993. in final fom 18 April 1994 

Abstract. The applications of parabosons by Schmutz and of supersymmetry by Jxvis and 
Stedman in Jdu-Teller systems are compsled and Contmted. Although a. pxasupersymmetrie 
Jahn-Teller system has not yet been identified. the method of Schmutz is used h e n  to show 
that the E Y f supersymmetric Jahn-Teller Hanultoman c m  be written in term of pmboson 
operaton. 

1. Introduction 

Jahn-Teller systems are interesting candidates for non-relativistic apolications of supersym- 
metry in quantum mechanics because of the degeneracy of the fermion states, the existing 
fermion-boson interactions and the well established tradition for applying higher group 
symmetries to reveal approximate underlying symmetries (for example, Pooler and O’Brien 
1977, Judd 1982, Stedman 1983). 

The work of Scbmutz (1980) on parabosons and that of Jarvis and Stedman (1984) on 
supersymmetry, respectively, in E @< Jahn-Teller Hamiltonians have superficially common 
features. We show that, although the differences in these approaches are fundamental and 
do not allow the identification of a parasupersymmetric Jahn-Teller system at this stage, 
the anharmonic terms introduced by Jarvis and Stedman to achieve supersymmetry may be 
given elegant representation using paraboson operators. 

We take the Hamiltonian to be H = H,+H,+H,+H, where He, HI are the unperturbed 
Hamiltonians of the N-fold degenerate electronic system and of a harmonic oscillator 
with the same degeneracy (so that supersymmetry is possible), H, is the fermion-boson 
coupling term and Ha represents anharmonic phonon coupling. In the schemes of Jarvis 
and Stedman (1984). it is vital that anharmonic (boson-boson) couplings in H, be present 
to act as the supersymmetric counterparts of the fermion-boson couplings under fermion- 
boson transmutations. Since physical systems will certainly possess some anharmonicity, 
this supersymmetric model is expected to be at least as realistic as those assuming harmonic 
couplings when discussing higher symmetry in Jahn-Teller systems. 

In the E c3 t system, a doubly degenerate vibrational mode (of symmetry E in, say, the 
group 0) is vibronically coupled to a twofold-degenerate ( E )  electronic level (He =l). The 
fermion-boson coupling has the form H, uz$q + ~ ~ $ 2 ,  where @; = b, + bf,  bi and j$ are 
annihilation operators for boson mode and fermion state i, respectively, and uz and ux are 
the usual Pauli matrices. We shall Write 6, f for the associated column matrices (b,) ,  (5). 
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2. Supersymmetry in Jahn-Teller systems 

We now review and adapt the results of the Jarvis and Stedman formalism. 
generator of supersymmetric transformations is the supercharge S 
P = expG($)bexp(-G(+)), 6 
of 4, Therefore 

The 
f' . p, where 

(4~1, i = 1,2,  and G is any real differcntiable function 

where the left and right arrows indicate row and column labels, respectively. S is nilpotent 
and the Hamiltonian H = (S, ST) is necessarily supersymmetric (Witten 1982, Blockley 
and Stedman 1985, Stedman 1985). 

We may expand P in t e m  of repeated commutators and use the result [ G ( @ ) ,  bj*'] = 
&@)(+), where the superscript i denotes a partial derivative with respect to q5i. Since any 
two functions of 9 commute we have 0 = b - G'(4). It follows that 

+ +  
[ P , Pi 1 = 1 - 2G"(4) 

The Hamiltonian becomes 
+ - +  

ff = fVP,  Ptlf  +P'P ( 1 )  
= f'f + bib - 2ftG"(4)f - G'(4)b - btG'(@) t G'(4)'. 

This may be written as H = He + fi  + Hc + Ha, where H, = -2ftG"(b)f and 

Ha = -G'(b)b - btG'(+) + G'(+)* (2) 
= t rG"(4)  - (G'($))T++ G'(4)'. 

Jarvis and Sledman point out that each such term in H is guaranteed to be invariant under 
the point group if the fermions and bosons transform in the same manner and if G(4) is 
an invariant function; this follows since P - b - f and a contraction such as f'P is then 
invariant under the point group. 

For the E 8 E Jahn-Teller system, Jarvis and Stedman (1984) choose a D4 3 D2 
subgroup basis so that 4 = (41. q5dT - ( (3zZ-rZ)/ , /3 ,  ~ ~ - y ' ) ~ .  The only quadratic, cubic 
and quartic invariants that can be constructed from 4 are 12 = (#+@), I ,  (6: -3&@) 
and 14 I:. Also @ 1 (4; - hZ, -24144~)~ transforms as 4. If G E  - b Z s  3 then 
P = b t a Q  and 

(3) = 4cy!4l(fitfi - Afd -"tf:fz - f2'fi)) 
= 44(4,u2,-42ux)f.  

G E  generates a mixture of cubic and quartic anhamonicity: Ha = alJ + ryz14. Thus 

HJS = Hz t He+ H, + Ha = btb+ f t f + 4 a f t ( 4 i u r  - @zu,)f t m I 3  +a21.t. (4) 
On projecting out the feimion operators HJS -+ HJS by the relation HJS 
find 

ftHJsf, we 



Parabosons versus supersymmetry in Jahn-Teller systems 4665 

3. Parabosons in Jahn-Teller systems 

Similarly, we briefly review and adapt the representation by Schmutz (1980) of an E @ E 

Jahn-Teller system in terms of displaced parabose oscillators (we use 01 = A.14 and 
4 2  + -42). Schmutz begins with the E 8 E Jahn-Teller Hamiltonian Hz + H e  + H,: 

t +  
Hs = ( b t b + 1 ) 1 + 4 ~ ( 4 i ~ : - 4 z ~ ~ ) = ( b i b ) l + [ P , P t 1 .  (6) 

Note the omission of anharmonicity. The operator r; exp(inbjbi) and has the useful 
properties r/ = r;’, ( r i , b < ]  = 0 and TJn,) = (-1)”;In;); in addition, since r; has 
expectation value unity in any space of definite (integer) number and commutes with all 
operators in the theory, we can take r, = rf = r;’ in all relations. A derived unitary 
operator U1 diagonalizes Hs: 

H,, = bib + 1 + 401(41 + i74r1) (8) 

where q = A. The operators a, ,  a , .  where ai = btr3-,,  i = 1,2,  obey boson commutation 
relations amongst themselves (as do bi, bi), but each has a zero anticommutator with each 

trilinear commutation relations characteristic of all p = 2 parabosonic operators (where <, 
like 0, is either + or -) (see for related material Green 1953, Greenberg and Messiah 1965, 
Rubakov and Spironodov 1988, Beckers and Debergh 1990a,b, Bardakci 1992): 

t 

of b;, bi .  t A = (A+, A-)T = Ulb, A, = (bl + qaz)/JZ. These operators satisfy the 

[{A,,, A:’,]. A-,] = -A-q [ { A R s  A,]. Aal = 2 4  [(A, ,Aql ,  A < l  = 0. (9) 

Other such relations follow by Hermitian conjugation and also by the generalized Jacobi 
identity. A* may be defined by the relations INt ,  A,] = -A,,, where Nc = {A<,A:] .  In 
the two-dimensional case, N+ = N- = N and is the number operator for the system. The 
unperturbed Hamiltonian of the two-dimensional harmonic oscillator H2 = bib + 1 may be 
written as H2 = N = A?A + 1. H, can therefore be expressed as H,, = Nh - 16aZ, where 

N; 
Hence, the Hamiltonians H,, are identical to those of the displaced parabose oscillators 

(A, being the parabose operator and 2J201 its displacement). Under the unitary 
transformation U, in which Hs + H i ,  f -+ f’ (which preserves the Fermi 
anticommutation relations) then HS = f’tHAf’, and parabosonic expressions are obtained 
in the Hamiltonian. The Schmutz diagonalization process may thus be viewed as a result 
of this unitary symmetry of the formalism. 

[ A i ,  A y ]  and A:) 7 A, + 2J201 so that N; = N + 2z/z01(A~ + At) + 801’. 

4. Action of Schmutz transformations in the Jarvis and Stedman Hamiltonian 

An obvious question is: what is the action of the Schmutz unitary diagonalizing matrix 
U, on the Jarvis and Stedman Hamiltonian HIS? Let HJS + His. f + f’ and P + p’ 
under U,. We obtain His = Hi +01I-,u, + a’I& Since HJS = f’tHjsf’, this may be 
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regarded as the original Hamiltonian in a unitarily transformed fermion basis. We note also 
that S = f", where 6' = A + orPl and 

E D  Sasage and G E Sredman 

with C, = A( + A i .  Hence, S also involves paraboson operators and the (supersymmetric) 
Hamiltonian 

H,s = (f"P')lo"f') + Co"f"(f"P') = f '+HjSf ' .  

@pP' = A ~ A  + N A ~ P ,  + P/A)  + C ~ P / P ,  

Since btb = AiA 

(10) 

13 = &(AtP~ +P:A) = C+C-C+, 4 = P:P, = (C+C-, C-C+) and so the Jahn-Teller 
Hamiltonian may be written 

ffjs = f " ( f f s  + W(P/A i- atq)c7, 4- azP/.i?:p,)f'. (11) 

At this point we simply follow Schmutz's method for rendering such a Hamiltonian diagonal, 
using the fermion transformation associated with U,; and, as in the work of Schmutz, the 
effect is to further highlight the paraboson operators. If U U&J,, HJS + H& f -+ f" 
and @-+ 0" under U then 

where 
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( B O  are therefore paraboson operators (i.e. they obey a mixture of commutation and 
anticommutation relations). In addition BtB = btb = AtA, I, = (BtP2 + PJB)F2, 
I3r2 = &(D+D-D+ + D-D+D-) and I4 = PIP2 t = 2(0+D-,  D-D,) so that 

Up ‘put = A ’ A  + ff(BtP2 + P,B)r2 + a2PJP2 (16) 
and thus 

Hjs(A, B) = (Ni - 16u2)1 + a(PJB + B’P2)crZ + aZ(P:P2)1. (17) 
This is a diagonal Hamiltonian expressed entirely in terms of parabosons. 

Remarkably, the anharmonic terms are very amenable to expression in terms of 
paraboson operators. The cubic and quartic anhmonicity invariants 13 and 14 have, in 
fact, a far more elegant relationship when so expressed; the symmetry between the plus and 
minus parabosons is manifest. 

5. Parasupersymmetry? 

All of the former analysis is conlined to standard fermi-bose supersymmetry. the generator 
and spectrum of which are reported in Jarvis and Stedman (1984). However, the above 
analysis is suggestive of a role for parasupersymmetry in Jahn-Teller theory. 

The usual approach, however, is to use parafermi-bose supersymmetry (Jarvis 1978, 
Rubakov and Spiridonov 1988, Beckers and Debergh 1990a). This can lead to spectra 
with threefold degeneracies. Such a possibility of alternative higher symmetries would 
continue and enhance the above-mentioned tradition for applying higher group symmetries 
in Jahn-Teller systems. 

Following tke first example of Rubakov and Spiridonov (1988) we might search for 
parasupersymmetry using the paracharge 

Q =  p+iWI O 0 E) 
( O  0 p + i W ,  0 

/2W! + w: 0 o \  
leading to a Hamiltonian of the form 

For this to replicate, say the T x E Jahn-Teller system, we need to identify this interaction 
by an appropriate choice of the superpotentials Wl,  W2. The T x E Jahn-Teller system has 
an interaction, when diagonalized, of the form (T -& a ) .  
Hence, we would have to identify 

2W;+ W;= W [ - W ; = 3 W [ f 2 = J q 5 : + @  W[=-2W;.  

While these relations are algebraically consistent, each potential must contain both $1 and 
q5?; in addition, the further conditions required by Rubakov and Spiridonov give the unlikely 
requirement that W;(W:ZWl) = 3W;’. This approach therefore seems unpromising. 
Nevertheless the paraboson link established here may help to indicate a better direction 
for studying possible realizations of parasupersymmetric systems. 
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